

10/03/2020

Soils vary in their capacity to sequester and 'protect' carbon

SOC % is dependant on:

Carbon (OM) supply

Biomass grown or (carbon) amendment added e.g. compost

AND

<u>Carbon loss</u> Decomposition and erosion

This is modified by the...

- Type of OM

- Soils capacity to store SOC
- (clay%, mineralogy, depth, structure)

Management factors	C seq rate (t C/ha/yr 0-30cm)	Years	Reference
Permanent pasture - NSW			
Liming	0.46 to 0.55	18	Chan et al 2011
Pasture rotations	0.22 to 0.40	>13	Chan et al 2011; Helyar et al 1997
Nutrient management	0.41	>25	Chan et al 2010; Orgill et al 2014; Orgill et al 2014; Orgill et al 2017
Rotational grazing	0.35	>25	Chan et al 2010
Grazing management (strategic & rotational)	1.04 to 1.46	>5	Orgill et al 2016; Orgill et al 2017
Nutrient mgmt & inc stocking rate (*60cm)	0.60*	20	Coonan et al 2019
Permanent pasture - Australia meta-analysis			
Nutrient management	0.29	dns	Sanderman et al 2010
Irrigation or legumes	0.11		Sanderman et al 2010
Introduced perennial pastures	0.50	dns	Gifford et al 1992
Cultivated crop to pasture - NSW	0. 50 to 0.70	22	Young et al 2009; Chan et al 2011; Conyers et al 2015
Crop to pasture - Australia meta-analysis			
Nutrient mgmt, legumes, irrigation (*30cm+)	0.30 to 0.60	dns	Sanderman et al 2010
Crop with pasture in rotation - NSW			
No till wheat with 2 yr pasture rotation	0.26	25	Chan et al 2011
Crop rotation with 2-6 yr pasture rotation	0.23	18	Helyar et al 1997
Crop - NSW; Nutrients + stubble & incorporated (*160cm)	1.10*	5	Kirkby et al 2016

PART 2

Soil microbes need nitrogen (N), phosphorus (P) and sulphur (S)

- Humus consists of the remains of bacteria 1. and other microbes that 'break down' OM
- Plant material consists mainly of carbon 2.
- 3.

۷.	Plant material consist	carbon					
3.	To increase humus (stable C) soil microbes use N, P and S						
		С	Ν	Р	S		
Humus		1000	~90	~19	~14		
W	/heat	1000	17	2	3		
P	nalaris (shoot)	1000	71	5	5		
Sı	ubclover (shoot)	1000	89	10	••		

Kirkby et al. (2011) Geoderma, 163:197-208

Charcoal

нимиз

Particulate ('labile')

Nutrients for plants AND for soil microbes?

Adaptive management – future proofing soils (and farming systems)

Resilience on your farm through enabling your soil to

- Store more water
- Cycle more nutrients
- Grow more plants
- Make more soil
- Think about transforming part of the farm or farming system (there are risks with pulling the rug out!)
- Make the transition or changes on parts of the farm as part of a plan
- · Identify the inefficiencies (e.g. fertiliser application) and start there
- Think about profitability over time, not just short-term production/yield
- Ask questions of ... everyone!

Orgill et al 2016

9

Soil carbon methodologies

ACCU's need to be consistent with approved methodologies

Some buyers pay more on the voluntary market (value of co-benefits!)

Soil carbon methods

- 1. Measurement of soil carbon sequestration in agricultural systems
- 2. Estimating sequestration of carbon in soil using default values method (model-based soil carbon)

Needs to be additional, new (not business as usual) and permanent (25 or 100yr contracts)

In Summary...

- Carbon is cycling on your farm already
- To change it and sequester <u>more</u> SOC you may need to change practice
- So what is your biggest lever?
- Remember that there may be some soil and climate factors that limit carbon sequestration
- To increase SOC on your farm consider:

right practice, right place, right time

Dr Susan Orgill M: 0428 424 566 E: susan.orgill@dpi.nsw.gov.au

@NSWDPI_Soils